If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+320t+20=0
a = -16; b = 320; c = +20;
Δ = b2-4ac
Δ = 3202-4·(-16)·20
Δ = 103680
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{103680}=\sqrt{20736*5}=\sqrt{20736}*\sqrt{5}=144\sqrt{5}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(320)-144\sqrt{5}}{2*-16}=\frac{-320-144\sqrt{5}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(320)+144\sqrt{5}}{2*-16}=\frac{-320+144\sqrt{5}}{-32} $
| 10x-8(5/4x+3)=16 | | 4t^2-80t-5=0 | | 3x=(5x-10) | | 10x-8(1.25x+3)=16 | | 17y^2+12y=25^2 | | 2x+24=5x-30,x | | 2(2x+12)=52 | | 7w-3(2w-4)=11 | | 7w-3(2w0-4)=11 | | 4x+3–2x=15 | | 17y^2+12y=25 | | 17=c+7 | | |m+3|=12 | | 17(y^2)+12y=25 | | 0.2(x+8)-9=2 | | -4x-65=-1 | | 9(3x+9)=256 | | 5x-4=252 | | 8-x²=1 | | 6x=311 | | -2(3x+1)=4x(x-5) | | 6.3*10^12=x/0.1-2x | | 4z+2z+1=25+2z | | 25=12.5t | | 0.65=x/0.476-4x | | 3=1.75(-1)+b | | 2^(3x)*3^(2x)=5184 | | 8x+2(10x+-4)=20 | | 10x-4x+120=10x+48 | | 4x+5(3x-21)=85 | | -(x-+(1/2)-(5/2)=-18 | | 49x+9÷=49x+83 |